

An Overview to Course Contents

Topics today

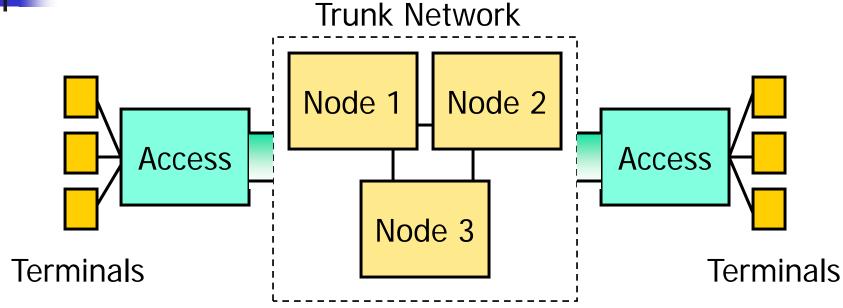
- Practicalities
- Table of course contents
- Networking paradigms: Determining networking trends
- Network evolvement
 - Topology
 - divided
 - integrated
 - mobile
 - Telecommunication markets
- Review of course contents in selected topics
 - The OSI-model
 - Networking approaches: PSTN, ISDN, Mobile, Internet
- Future trends

Practicalities

- Lectures (Thursdays 14-16 in hall C)
 - Timo Korhonen (timo.korhonen@hut.fi)
 - Michael Hall (michael.hall@hut.fi)
- Tutorials (Wednesdays 14-16 in S1)
 - Mika Nupponen (<u>mika.nupponen@hut.fi</u>), Yue Feng (feng@cc.hut.fi)
- Textbooks: Ericsson, Telia: Understanding Telecommunications, Part II, ISBN 91-44-00214-9 (Studentlitteratur), James F. Kurose, Keith W. Ross: Computer Networking (2nd Ed., Addison Wesley)
- Reference: A.S. Tanenbaum: Computer Networks (4th Ed., Prentice Hall)
- Homepage: http://www.comlab.hut.fi/opetus/423

Grading

- Course grade consists of
 - Closed book Exam (max 5p, required)
 - Lecture Diary (max 5p, required at least 8 diaries to return and grade, full compensation only if diaries of all lectures returned, voluntary)
 - Tutorials (max 5p, voluntary)
- Grade weights: E*0.95+D*0.2+T*0.15
- Example of lecture diary can be inspected at homepage.
- After the lecture send email to lectures@hut.fi to specify:
 - Your name and student number
 - Web address where you store your lecture diaries (all your diaries are accessible from a single page you set up)
- Diaries graded by fellow students grading guide available at the course homepage



Some topics from course contents

- Introduction
- Public Switched Telephone Network (PSTN)
 - Exchange techniques
 - Transmission
- Integrate Services Digital Network (ISDN)
 - Functions
 - Interfaces
- Automatic Transfer Mode (ATM) and Broadband-ISDN
- X.25, Frame relay
- Public land mobile networks
 - GSM
 - WCDMA
- Signaling networks: SS7
- The Internet: Network topology, TCP/IP Suite, Services

Telecommunication networks have much in common

- Trunk and access parts
- Access part terminated by terminals
- Network nodes and links are optimized for certain assumed traffic patterns
- This model applies for both data (packet) and voice networks
- Due to these network similarities network analysis carriers common subtopics

Course contents: Networking subtopics

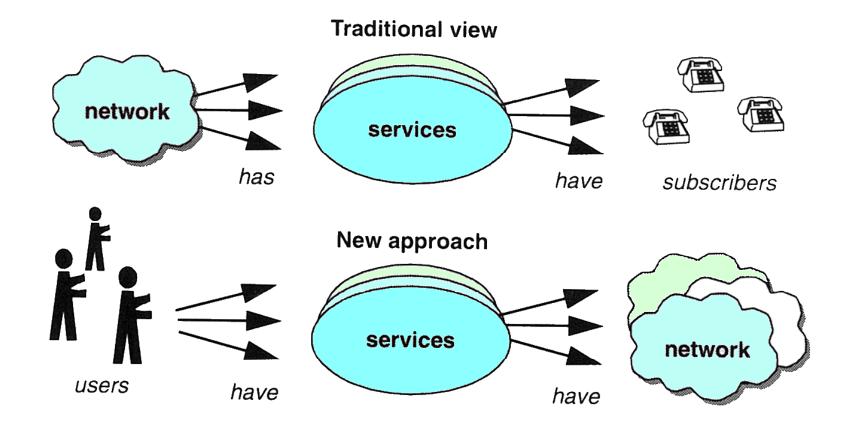
- User services and terminals (as IN services: call last dialed...)
- Standards (IETF, IEEE, ITU-T ...)
- Routing and switching (unicast multicast, devices)
- Transmission and links (as fibre, coax-cable.., RSVP)
- Access and transport (terminals, local-loop techniques..)
- Servers service (web,mail,ftp ...)
- Signaling (SS7, X.25, Frame relay ...)
- Network management (as OMAP of SS7...)
- Interworking between networks (gateways, bridges ...)
- Network planning

IN: Intelligent Network

IETF: Internet Engineering Task Force

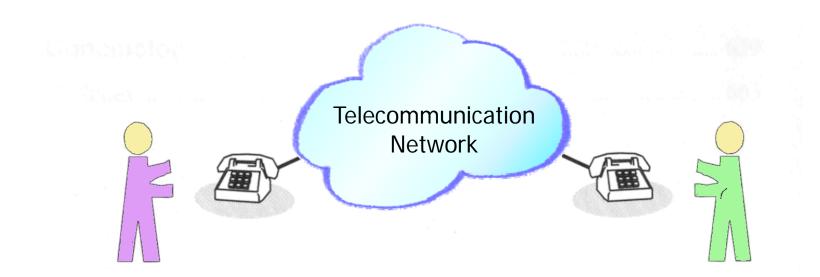
IEEE: the Institute of Electrical and Electronics Engineers, Inc

RSVP: Resource ReSerVation Protocol


ITU: International Telecommunications Union

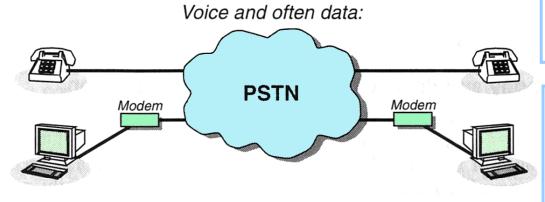
SS7: Signaling System 7

OMAP: Operation and Maintenance Application Part



Paradigm shift

Network evolvement



Most people have observed that a telecommunications network is a system transmitting the messages (even SMS) ... In this course we focus on analyzing that the networks can be divide to ...

Data and voice networks

Divided networks

Data communication:

Frame relay:

- virtual circuits
- used to connect two LANs
- compromises in error correction & flow control
- for high quality links
- rates: 2-50 Mb/s

Frame Flow Control:

- service for a pair of communicating entities
- reassures non-overwhelming comms. (not too many packets)

- Nodes and links with well defined (standardized) interfaces
- Network nodes and links that are optimized for certain, assumed traffic
- Traditional assumption: <u>Voice</u> and <u>data</u> services in different networks

Integrated Services Digital Network (ISDN)

Merged networks

Voice, data; multimedia

- Modern PSTN exchanges apply ISDN technology (64 kb/s...2 Mb/s) both internally and externally
- ISDN and its broadband version B-ISDN (up to 100Mb/s) supports data communications also for future PLMNs
- Differentiated services: Transportation system channeled into constant rate, real-time and higher-latency

ATM: Asynchronous Transfer Mode

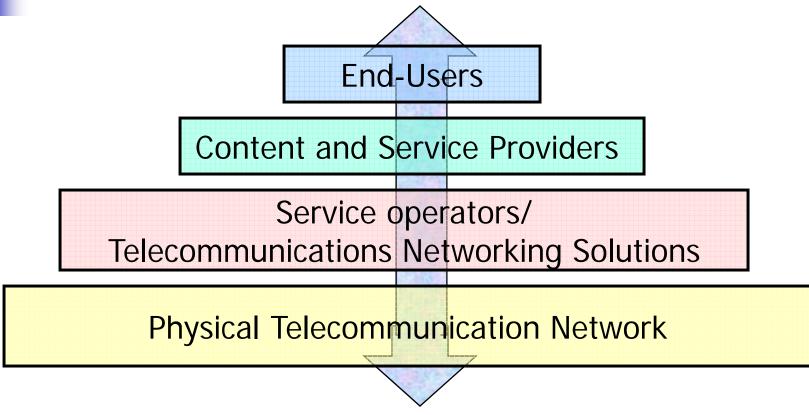
PLMN: Public Land Mobile Network

UMTS and Differentiated Services

- UMTS supports wide range of applications that posses different quality of service (QoS) requirements.
- Applications and services can be divided in different groups, depending on QoS requirements. Four traffic classes can been identified:
 - Conversational class (very delay-sensitive traffic)
 - Streaming class
 - Interactive class
 - Background class (the most delay insensitive)
- Hence TCP (Connection-oriented transport-layer) is not always applied - one may use also UDP (Connectionless transport-layer protocol) - Why?

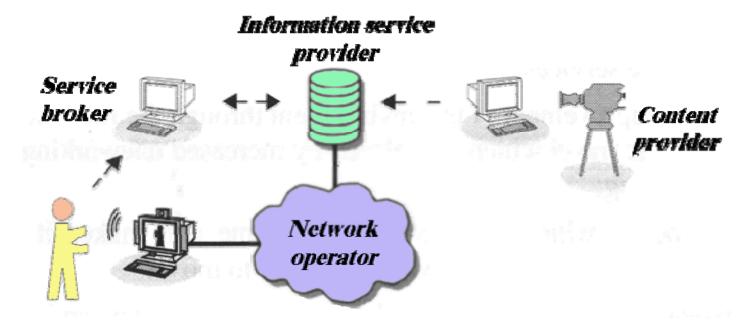
Network/service adaptivity

- Services manifest themselves via various <u>customer profiles</u> (that may differ within a short time period), and thus efficient <u>adaptivity</u> should be supported by network configurations
- Advanced networks have a tendency to carry <u>intelligence in terminals</u> (and not in exchanges)
 - Reduces signaling traffic
 - Moves costs to end-users
- IN (Intelligent Network) solutions developed first for PSTN but a typical important part of most networks as in PLMNs
 - Enables service <u>flexibility</u> in exchanges (software radio does the same in terminals)
 - IN services designed in cooperation with terminal intelligence



- Mobility is required practically for all services in the very near future!
- In this course we will discuss especially the GSM (Global System for Mobile communications) (9.6 kbit/s++) and WCDMA (Wideband Code Division Multiple Access, or UMTS) networks
- UMTS will be launched 2002-2003 yielding mobile data rates up to 2 Mb/s. However, the GSM network will be upgraded for higher rates thanks to
 - GPRS (General Packet Switched Data),
 - HSCSD (High Speed Circuit Switched Data) and
 - EDGE (Enhanced Data Rates for GSM Evolution)

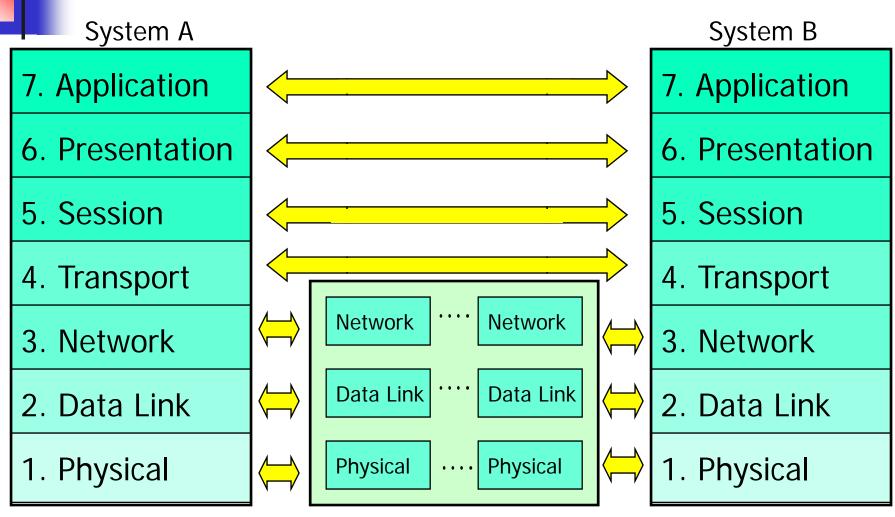
Telecomm market players




 Telecommunication network content and technology producers, operators and consumers form an interoperable hierarchy

Telecomm market players

- End-users (individuals and companies)
- Information service providers (As a telephone catalog services designed by a company, giving telephone numbers when you give a name or an address)
- Service brokers sell dedicated service packages (as MySAP)
- Network operators (as Elisa, Telia, or Radiolinja)
- Content providers (as Paramount Pictures)



Telecom services categorized B2C, B2B,P2P

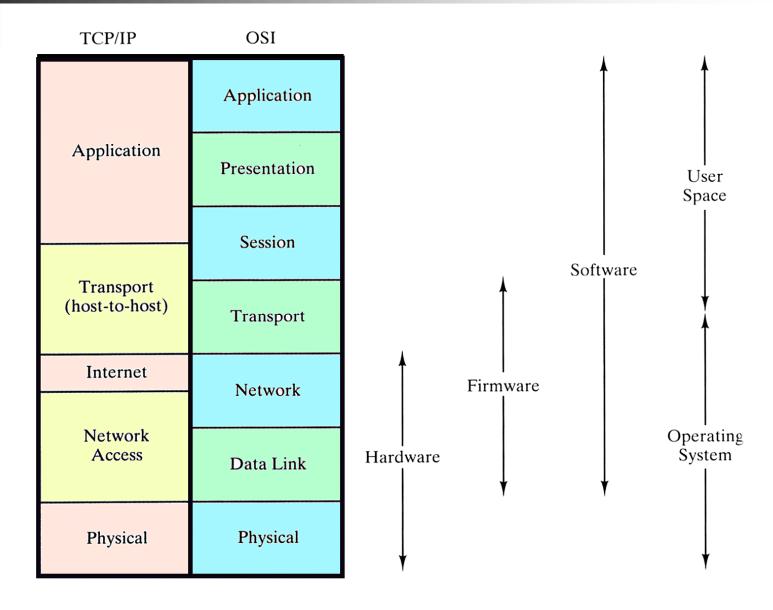
Category	Important application
Communications	teleworking, multimedia, mail
Knowledge	distance education, database retrievals
Entertainment	games etc. (getting increasingly important!)
Information	Marketing, yellow pages, catalogues
Service	home shopping and banking, telemedicine
Remote control/remote supervision	Automation applications

The ISO-OSI Model

LAN Network

OSI: Open System Interconnections

ISO: International Organization for Standardization



The OSI-functions

7. Application	User access to OSI environment applications	ers
6. Presentation	Provides <u>independence</u> of applications from differences in data presentations	Lay
5. Session	Establishing, managing and termination connections (sessions) between cooperating applications	eway
4. Transport	Provides reliable, transparent data transfer for lower level data segments or blocks	Gate
3. Network	Gives <u>routing</u> service for transport layer. Layer of <u>routers</u> .	IS
2. Data Link	Sends data blocks with synchronization, error and flow control for end-to-end connections*. Layer of bridges.	Layers
1. Physical	Transforms electrical signal into bits. In local networks standardized by 802.x standard. Layer or repeaters	LAN

^{*}For instance in a classroom of workstations

Practical networks usually melt OSI

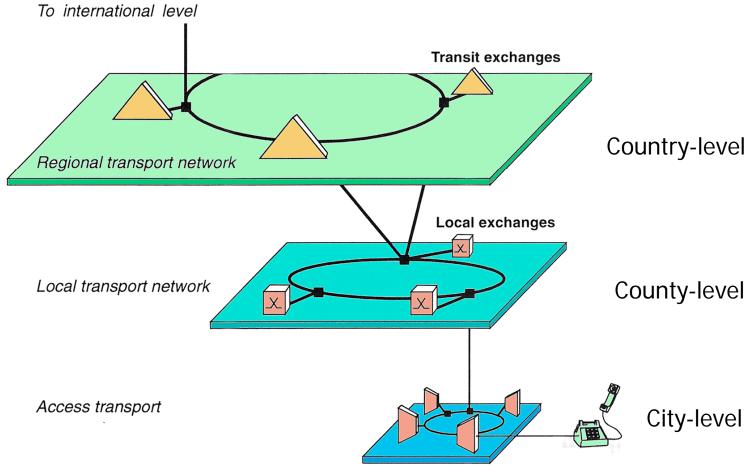
Each OSI-layer has its standardized services

7. Application	NCP, FTP, Telnet, SMTP, SNMP, LAT, AFP, SMB
6. Presentation	SNA Presentation services
5. Session	NetBIOS, NetBEUI, DNS,
4. Transport	SPX, PEP, TCP, UDP, NSP
3. Network	IPX, RIP, SAP, IDP, IP, ARP, RARP, ICMP, X.25, RIP
2. Data Link	IEEE 802.X, ANSI X3T9.5, SMT,
1. Physical	V.24, V.35, V.90, 10Base5, 10Base2, 10BaseT, FDDI, SDH, G.703

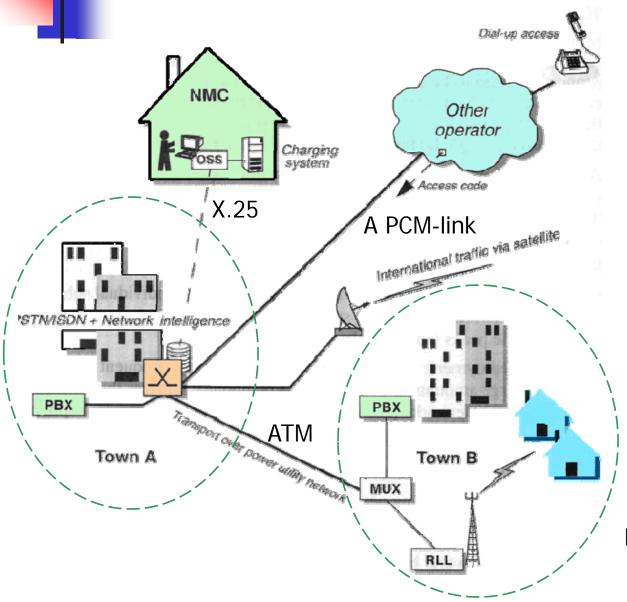
X.25 "layer"

ATM "layer"

SDH/Physical


- OSI is seldom realized as "layer" itself but several layers are melted together into stratums
- In this example X.25 packet network operates on ATM based SDH access stratums.
- ATM forms an efficient info pipe where no address checking or error correction is done but it is left for lower layers

Router Router


The PSTN hierarchy

- Since '96 in Finland all the exchanges of PSTN have been digital
- However, there exists still analog phones
- Natural connection to the modern PSTN is the ISDN-interface

4

Example: PSTN Network operator in two towns

Note that by *dial-up networking* part of local exchange capacity is allocated for another operator

OSS: Operations Support

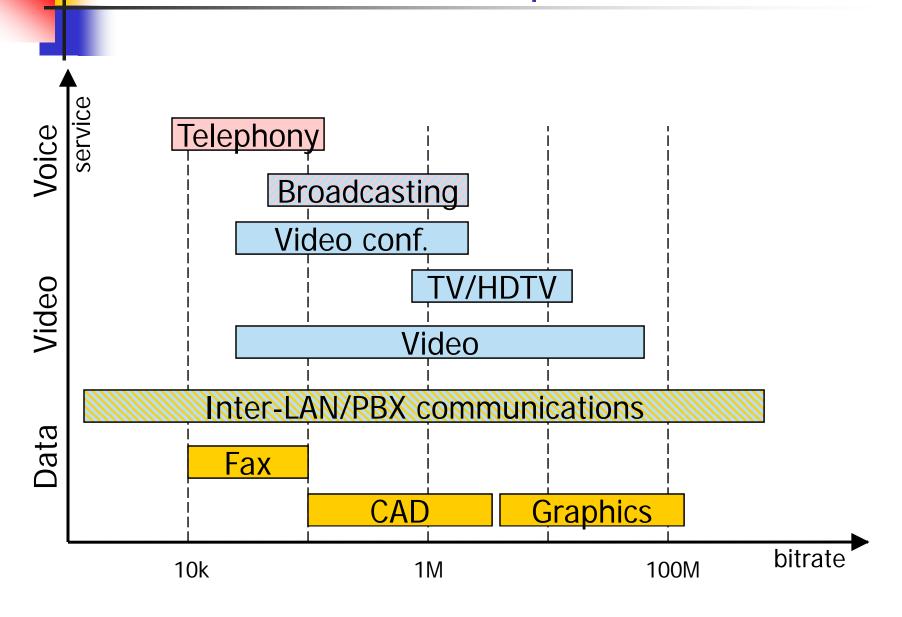
System

NMC: Network Maintenance

Center

RLL: Radio in the Local Loop

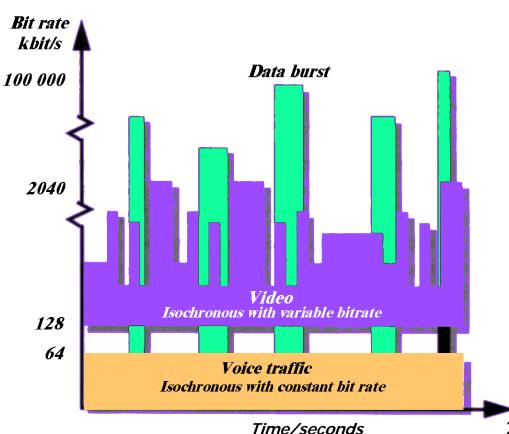
MUX: multiplexer


PBX: Private Branch Exchange

Telecommunications service requirements from the physical level: QoS

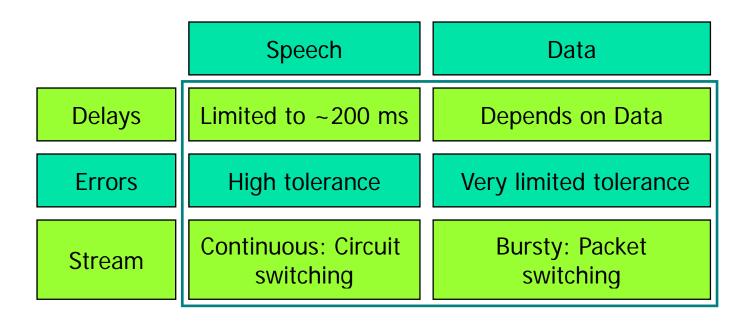
- Networking requirements: What services require from the network in respect of
 - Bandwidth,
 - Burstiness,
 - Symmetry (uplink /downlink rates),
 - Bit errors and blocking
 - Delay
 - Security
- These define QOS (Quality of Service)

Different services require different rates



Burstiness: video, voice, data

- Different services (telecomm. traffic) require different networking abilities
- Most real-life sources produce bursty traffic
- Modern networks can adapt into bursty service by allocation capacity very rapidly for other users


Bursty traffic:

- -Human speech
- Video and multimedia sources
- Data bursts in a packet network

Speech and data communications

 Teletraffic can be forced to fixed rate or bandwidth as speech in PSTN or ATM traffic

Bit errors and blocking

- Real-time services for video and audio
 - Can not tolerate delays clearly observable by human (in order 200 ms or larger)
 - Can tolerate relatively large error rates
 - Blocking probability depends on number of customers in a service area
- <u>Fixed rate data</u> services require much non-reusable capacity:
 - Fixed delay
 - demanding error rate limit
- High-latency data:
 - Large flexibility in delay
 - demanding error rate limit

Symmetry

- Categories:
 - Symmetrical channel as in fixed line telephony
 - Asymmetrical channel
 - Most technical Internet realizations (As xDSL-techniques or data over DVB, ADSL: 64 kb/s DL, 256 kb/s and up UL) are based on idea that downlink traffic is much larger that uplink traffic (in Welho® (by HTV) connections 525 kb/s DL, 120 kb/s UL)
 - Point-to-multipoint channel
 - TV and Fax are point-to-multipoint distributive services
- Note, however that some new (peer-to-peer) services in Internet (where your PC works as a server, using Gnutella network) might require symmetrical traffic channel
- Also Internet is used for point-to-multipoint (multicast) services as in Webcasting (as in Web-broadcasting or in the PointCast news service.)
- Therefore developing Internet services set stringent requirements for network infrastructure & planning!

Security and secrecy*

- Services require usually security & serrecy, e. g. reliable, shielded transfer. Especially for
 - rescue services
 - police
 - defense force

- *
- Message goes to the right receiver
- · Others can not do eavesdropping
- some special applications as telesurgery
- Networks can provide this by using:
 - fixed lines (PSTN, frame relay)
 - flexible routing (SS7)
 - scrambling or encryption (PLMNs)
 - coding or ciphering (in all modern telecom links & nets)
- Often reassured in several network levels

Public switched telephone network (PSTN)

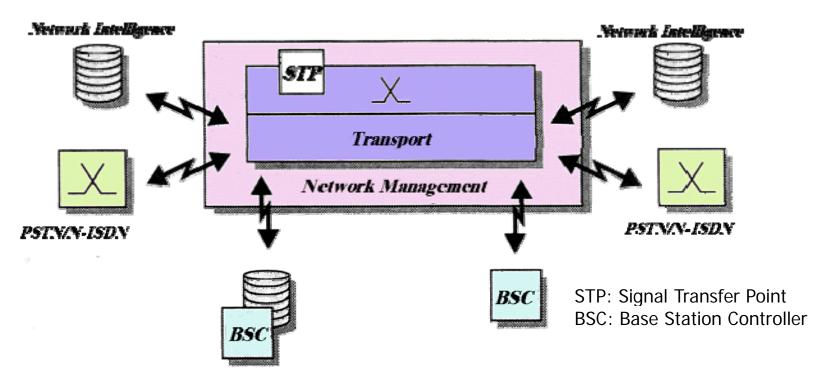
- The oldest (1876) bearer network (other: ISDN, ATM, frame relay, The Internet)
- After 1960 has got many renovations: data, fax, processor exchanges, PCM, satellite communications, network intelligence
- Primary characteristics
 - Analog access 300-3400 Hz
 - Circuit switched connection
 - Switched bandwidth 64 kbit/s (Digital exchanges)
 - Immobility (or limited mobility as in DECT=PABX RFinterface)
 - Integrated nowadays especially with N-ISDN

The PSTN (cont.)

- The PSTN is optimized for fixed speech service, statistically distributed, analog subscribers (by using the circuit switching technology that was made available beginning of this century).
- Support for data traffic "artificially added" by
 - modems
 - ISDN (integrated into exchanges)
 - xDSL (x digital subscriber line)
- However, PSTN is
 - Easily congested when subscriber services (or behavior) changes unexpectedly (no graceful degradation as in CDMA-PLMN): resource wasting

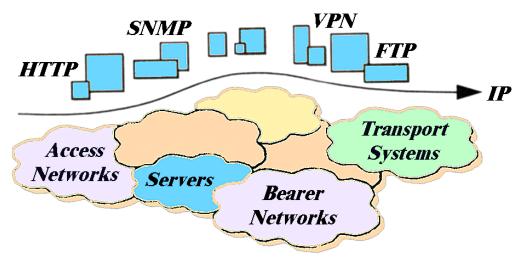
The PSTN (cont.)

- Vulnerable: network paralyzed easily in exchange malfunctions (still parallel system(s) provided)
- Network intelligence in exchanges and dummy terminals
- Poor adaptivity
- However, an important backbone for other networks!
- The PSTN will be there for a long time and it seems that it can be used for modern day networking also on quite high data rates by using various extension techniques
- Modern day networks are constructed thus that the required services can be supported: Thus


Services shape the modern networks!

Integrated Services Data Network (ISDN)

- In N-ISDN (narrow band 2x64 kb/s +16 kb/s, extendable up to 30x64=1.92 Mb/s), B-ISDN (rates exceeding 100 Mb/s) and ATM (asynchronous transfer mode) networks all services are handled integrated, circuit switched way.
- Mobility enabled by DECT (Digital Enhanced Cordless Telecommunications)
- Nowadays there exists many competitive techniques for ISDN as
 - Cable modems,
 - ISM -band (Industry, Science, Medicine) LANs (as HiperLAN I & II)
 - Digital satellite networking by DVB (SAS Astra®)
 - WCDMA
 - PSTN with 56 kbit/s (V.90) technology

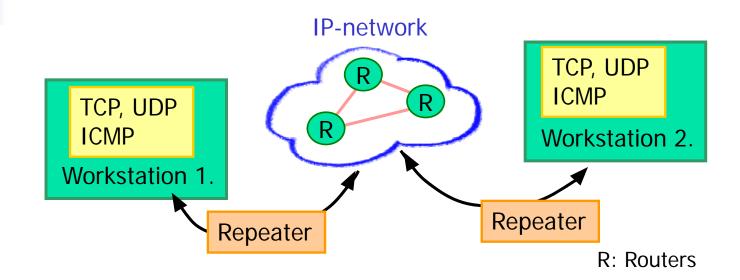

Signaling networks

- Telecom nets require more and more processor capacity:
 - More subscribers
 - Setting up connection is getting increasingly complex
 - Number of supplementary services increasing
- Thus the need to transmit signaling information (=interactive network telematic communication) is increasing

-

The Internet(working)

- The Internet carries "Everything over any physical medium" but still the 'best effort' meaning no service quality guaranteed
- Internet topics:
 - TCP/IP: Frames and sessions
 - Routing: Backbone connected subnets
 - Network planning: Core Regional nets Access nets Users
 - Signaling: TCP client server communications
 - Services: http, ftp, email, irc, news, telnet
 - Internetworking (!) for instance data over PSTN: PPP, SLIP



TCP/IP: Transmission Control Protocol Internet Protocol: a distributed triumph

- The first Internet was ARPANET in 1969's with four nodes
- Present TCP/IP version 4 has problems especially in
 - lacking of address capacity
 - security
- In 1997 ipV6 was initiated However not too much used yet due to compatibility problems
- TCP/IP does not have any general advance (except that it is so widespread) when compared to IPX, AppleTalk, DECnet etc.
- Essential high level network <u>functions</u>
 - routing management
 - name servers
 - network management protocols
- Network consists of
 - hardware as workstations, networks, routers, bridges
 - software as applications and protocols

TCP/IP Network transmission

- TPC/IP tasks: end-to-end transmission, error correction, maintain packet order
- Internet is based on datagrams that address subnets via routers
- A simple routing could be accomplished by a lookup table between target IP and subnet IP

UDP: User Datagram Protocol, downgraded TCP/IP for good quality connections ICMP: Internet Control Message Protocol, testing usage

The playground of telecommunications markets

The expanding service market...

and the competing bearer networks

The expanding service markets and the competing bearer networks form an interesting playground!

Future trends

- PSTN used to transfer more and more data traffic
- user PSTN rates increase up to several Mb/s
- Also data networks (as Frame Relay) will be used for voice and there is a strong tendency to put everything over IP
- The fax service in PSTN will diminish and the respective messages are transmitted by e-mail (that is transferred via a packet networks (usually by TCP/IP))
- Inter(net)working between networks increases
- Traditional voice service in PSTN transforms using packets and moves to Internet
- PLMNs and especially (RF)-LANs develop very fast

Web resources

- xDSL: www.adsl.com
- 3:rd generation PLMN: www.w3.org, www.3gpp.org
- Telehallintokeskus: www.thk.fi
- IEEE standards: www.ieee.org
- Finnish standards: www.thk.fi/tele/suomi/standard.htm
- Network & terminal realization: www.nokia.com
- Have a look on link list at Kurose-Ross's homepage: open resources/references (!)
- ... and so many more!

Important auxiliary use for abundant abbreviations is their applicability for Internet search!